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Knot Theory

Knot theory studies different knots, closed loops in space that cannot be
deformed to each other without crossing itself.

The exact shape of a knot does not matter, since a continuous
deformation does not change the knot.

In physical knot theory, we treat the knot as a physical object and study
its properties.

We can give the knot properties such as mass, width, or in this case,
charge.

Particularly, this means that we need a parametrization of a knot to do
calculations, such as through numerical methods or complex analysis.
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Torus Knots

We will focus on the torus knots. This is a family of knots that can be
embedded on a torus.

A torus knot can be parametrized by (p, q). Here p is the number of
spins around the big circle of the torus and q the number around the
small circle of the torus.

Here’s some pictures taken from Geogebra, of (3, 2) and (3, 5) and (5, 2) torus
knots.

Exercise to the viewer: rotating the last one looks really cool.
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Parametrizations of Torus Knots

A (p, q)-torus knot can be parametrized by r(t) = (x(t), y(t), z(t)) with

x = (cos(qt) + 2) cos(pt)

y = (cos(qt) + 2) sin(pt)

z = − sin(qt).

where t ranges from 0 to 2π.

Here’s the simplest non-trivial knot, the (2, 3)-torus knot:
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Parametrizations of Torus Knots (Images)

We use this parametrization because:

It gives rotational symmetry.

It lies on an actual torus: (
√

x2 + y 2 − 2)2 + z2 = 1.

Here’s a more complicated knot, the (3, 8)-torus knot:
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Electric Potential and Electric Field

In our project, we will give the knot a uniform charge and look at its electric
potential and electric field.

Recall that the electric potential from a point mass is a scalar, and is
proportional to 1

r
, where r is the distance to the point mass.

Thus, we may define the electric potential of a curve r(t) to be

Φ(x) =

∫ 2π

t=0

1

|x − r(t)|dr =
∫ 2π

0

|r ′(t)|
|x − r(t)|dt.

The electric field is the gradient of the electric potential and is a vector.
It is

∇Φ(x) =

∫ 2π

0

(x − r(t))

|x − r(t)|3 |r
′(t)|dt.
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Graphs of the Electric Potential and Electric Field

To get an idea of what these functions look like, here are some graphs. Our
goal is to use actual calculations to show these graphs are right.
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Observations on the Electric Potential and Field

Now, we go onto the z-axis. We can now let x = (0, 0, α). Plugging in our
parametrization for r(t) and doing some substitutions gives us:

|r ′(t)| =
√

q2 + p2(2 + cos(u))2

Φ((0, 0, α)) =

∫ 2π

0

√
q2 + p2(2 + cos(u))2√

α2 + 2α sin(u) + 5 + 4 cos(u)
du

∇Φ((0, 0, α))z =

∫ 2π

0

(α+ sin(u))
√

q2 + p2(2 + cos(u))2

(α2 + 2α sin(u) + 5 + 4 cos(u))3/2
du

Observe that the numerator depends on p and q, so we may scale p and q
while scaling the integral by the same factor.
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Numerical Observations of the Electric Potential and Field

We can get some results:

The x- and y -coordinates of the electric field along the z-axis go to 0.

The electric field on the z-axis is zero only at α = 0. (Proof: look at the
sum of the integrand at t and 2π − t)

We can also look at the electric field’s extreme points:
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Countour Integrals in Complex Analysis

We now give a basic overview of complex analysis.

A pole is where a function goes to infinity (for our purposes).

A residue is the coefficient of the 1
x
term of a function’s Laurent series

expansion at a pole.

Cauchy’s residue theorem states that an integral of a loop is equal 2πi
times the sum of the residues inside it.

For example, if we integrate the function 1
x
along these three contours, the red

and blue are both 2πi and the green is 0.
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Branch Cuts

Some functions, such as ones involving square roots, can take on multiple
values (e.g. opposite signs). They are then not well-defined.

For example, no loop of the function
√
x around 0 can be continuous.

Points that cannot be looped around are called branch points.

We can make branch cuts between points to fix this - the function is now
defined on a domain missing the branch cuts.

Note that, the two segments don’t cancel!
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Approximating the Length with Complex Analysis

Now, let’s take something like∫ 2π

0

|r ′(t)|dt =
∫ 2π

0

√
q2 + p2(2 + cos(u))2du

which represents the length of the knot. To turn this into a contour integral,
let u = e iω.

∫
|z|=1

√
q2ω2 + p2

(
ω2

2
+ 2ω + 1

2

)2

iω2
dω

We end up getting four branch points (the roots of the function).

The ω2 means 0 and ∞ are not branch points.
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Approximating the Length with Complex Analysis

Does this contour work?
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Approximating the Length with Complex Analysis

We now have

∫ 2π

0

|r ′(t)|dt = 8π + 2

∫ n

−n

√
q2 + p2

(
2 + m+xi

2
+ 1

2(m+xi)

)2

m + xi
dx

We turned it into the integral along a segment!

Intuitively, we can do this because a loop is well-defined around two branch
points (for functions behaving like

√
x).
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The Electric Potential Contour Integral

We can do the same substitution for the electric potential.

The electric potential has 8 branch points. Two are 0,∞, four are the
same as before, and two new ones come from the denominator. They are
at −2− αi and −2−αi

4+α2 . Conveniently, the branch points lie on ellipses
independent of p, q, α.
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The Electric Potential Contour Integral

We can thus approximate the integral using integrals on segments between the
points!
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